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ABSTRACT
Modeling the non-equilibrium dissipative dynamics of strongly interacting quantized degrees of freedom is a fundamental problem in several
branches of physics and chemistry. We implement a quantum state trajectory scheme for solving Lindblad quantum master equations that
describe coherent and dissipative processes for a set of strongly coupled quantized oscillators. The scheme involves a sequence of stochastic
quantum jumps with transition probabilities determined by the system state and the system-reservoir dynamics. Between consecutive jumps,
the wave function is propagated in a coordinate space using the multi-configuration time-dependent Hartree method. We compare this hybrid
propagation methodology with exact Liouville space solutions for physical systems of interest in cavity quantum electrodynamics, demon-
strating accurate results for experimentally relevant observables using a tractable number of quantum trajectories. We show the potential for
solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities, a scenario that
is challenging for conventional density matrix propagators due to the large dimensionality of the underlying Hilbert space.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119293

I. INTRODUCTION

Accurate numerical simulations of open quantum systems
are fundamentally important for the development of quantum
technology.1 Understanding and possibly controlling system-
reservoir interactions enables a diverse set of applications such
as the manipulation of quantum speed limits for driven state
evolution,2 quantum metrology with improved precision bounds,3,4

quantum circuits with improved gate fidelities,5 quantum optics
with nanophotonics,6,7 or controlled chemistry with quantum
optics.8,9 In many applications, the temporal correlations of the
reservoir variables that couple with the system of interest decay
much faster than the system-reservoir interaction times. The open
quantum system dynamics can then be modeled with Markovian
quantum master equations for the evolution of the reduced system

density matrix ρ̂S.10,11 For a Hilbert space of dimension d, the density
matrix scales with d2, making the direct integration of quantum mas-
ter equations numerically intractable for large many-body problems,
as d scales exponentially with the number of particles.12

To simulate the dynamics of open quantum many-body
systems, several techniques have been developed, including
stochastic methods,13,14 semi-classical methods,15 tensor net-
work representations,16–18 phase space methods,19–21 variational
methods,22 cluster expansions,23–25 and field theory techniques.26–28

Broadly speaking, these approaches differ in the way the den-
sity matrix and quantum master equation are represented and
propagated. Advanced simulation techniques are commonly used
in chemical physics for treating strong molecules in com-
plex reservoirs.29–32 Cavity quantum electrodynamics (QED) with
molecules has emerged as another domain in which advanced
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quantum dynamics methods are useful,9,33–35 as the emergence
of cavity-induced single-particle and many-body correlations
is believed to be relevant for explaining experiments on the
modification of chemical reaction rates in optical and infrared
cavities.8,31,36–44

We develop a stochastic wave function methodology for solving
Markovian quantum master equations in the coordinate represen-
tation. The stochastic component of the method is based on the
Dalibard–Castin–Molmer quantum jump technique,14 a type of
Monte Carlo method45 where the system wave function undergoes
a sequence of quantum jumps with transition probabilities deter-
mined by the instantaneous state of the system and the physics of the
system-reservoir coupling. Between consecutive quantum jumps,
the wave function evolves deterministically according to the instan-
taneous Hamiltonian, which we represent in a coordinate space
using the multi-configuration time-dependent Hartree (MCTDH)
method.46,47 Observables in the quantum jump technique are guar-
anteed to converge to the density matrix solution of the quantum
master equation by averaging over a sufficient number of wave
function trajectories.14 The scheme is applicable to Markovian mas-
ter equations in Lindblad form,11 but extensions to more general
reservoirs have been developed.48,49

Wave function trajectories in the coordinate representation
are particularly well suited for studying strongly interacting oscil-
lators subject to driving and dissipation, as often found in molec-
ular cavity QED problems.9,33,34 The system wave function can be
propagated in a coordinate space for any suitable light–matter inter-
action gauge.50,51 MCTDH propagators can already capture strong
correlations between high-dimensional anharmonic oscillators that
naturally emerge in chemical physics.52–56 Therefore, extending the
MCTDH method beyond the use of complex potentials42,57 is a
significant step toward scalable atomistic modeling of many-body
molecular cavity QED systems. Recently, an equivalent combination
of the Monte Carlo wave function method with the MCTDH has
been implemented in Refs. 58 and 59 for a vibrational energy transfer
problem.60

In what follows, we briefly review the quantum jump and
MCTDH methods (Sec. II). Then, we demonstrate the applicability
of the proposed methodology and explore its limitations (Sec. III)
and suggest possible applications of the method for studying cavity
QED with molecular oscillators (Sec. IV).

II. METHODS
A. Monte Carlo wave function method

For Markovian open quantum systems,10,61 the evolution
of the density matrix ρ̂S in Liouville space is determined by a
quantum master equation, which in Lindblad form reads (h ≡ 1 is
used throughout)11

d
dt

ρ̂S(t) = ı̇[ĤS, ρ̂S(t)] +∑
j

L̂jρ̂S(t)L̂†
j −

1
2
{L̂†

j L̂j, ρ̂S(t)}, (1)

where ĤS is the system Hamiltonian and L̂j are Lindblad jump
operators that describe the interaction between the system and the
jth reservoir channel. The square brackets denote the commuta-
tor, and the curly brackets, the anticommutator. The Lindblad form
of the master equation is a dynamical semi-group that ensures the

positivity of the density matrix.11 The Monte Carlo wave function
technique avoids the direct integration of the quantum master equa-
tion by propagating an initial wave function Ψ(0) over a sequence of
non-Hermitian evolution intervals that are interrupted at random
times by quantum jumps that encode the physics of the Lindblad
operators L̂j.14

Figure 1 summarizes the proposed Monte Carlo-MCTDH
(MC-MCTDH) algorithm. Starting from a reference time t, the wave
function ∣Ψ(t)⟩ is propagated with the MCTDH method up to t + Δt
with the effective non-Hermitian Hamiltonian

Ĥ = ĤS −
ı̇

2∑j
L̂†

j L̂j. (2)

For small Δt, the wave function norm is reduced as

⟨Ψ(t + Δt)∣Ψ(t + Δt)⟩ = 1 − δp, (3)

where δp = ∑j δpj is determined by the instantaneous jump
probabilities δpj = Δt⟨Ψ(t)∣L̂†

j L̂j∣Ψ(t)⟩. At the end of the interval, a
pseudo-random number 0 < ϵ < 1 is generated from a uniform dis-
tribution and compared with δp. If δp ≤ ϵ, no quantum jump occurs
and the wave function is renormalized as

∣Ψ′(t + Δt)⟩ =
∣Ψ(t + Δt)⟩
√

1 − δp
, (4)

before another interval begins. If δp > ϵ, a quantum jump occurs and
a Lindblad jump operator is chosen to act on the wave function. The
jth reservoir channel is chosen such that the operator L̂j gives the

FIG. 1. Flowchart of the MC-MCTDH algorithm. Deterministic propagation steps
with multi-configuration time-dependent Hartree (MCTDH) steps with stochastic
quantum jumps on the wave function due to system-reservoir coupling.
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smallest jump probability δj that is greater than ϵ. The new wave
function after the jump becomes

∣Ψ′(t + Δt)⟩ =
L̂j∣Ψ(t)⟩
√

δpj/Δt
, (5)

and a new interval begins. The steps are sequentially repeated until
the propagation ends, resulting in a piecewise quantum trajectory
for the system wave function.

Observables are computed by averaging instantaneous
expectation values over multiple trajectories.14 For the kth quantum
trajectory, expectation values ⟨Ψ(k)(t)∣Ô∣Ψ(k)(t)⟩ are computed at
the end of each interval, after normalizing the wave function. The
procedure is straightforward to extend for computing two-time
correlation functions.10 By construction, any trajectory-averaged
observable

⟨Ô(t)⟩ =
1

n T

n T

∑
k=1
⟨Ψ(k)(t)∣Ô∣Ψ(k)(t)⟩ (6)

asymptotically converges to the density matrix solution
⟨Ô⟩ ≡ Tr[ρ̂S(t)Ô] with the increasing number of trajectories nT.
The convergence proof can be found in Ref. 14 and is reproduced
in the Appendix. In practice, quantum optics problems allow for nT
∼ 102. Mean-squared errors (MSE) of the average observables can
be defined by comparing with the exact density matrix solutions
(see the Appendix). The independence of each trajectory facilitates
computational parallelization strategies.

B. MCTDH propagator
We use the MCTDH method for the deterministic propaga-

tion step in Fig. 1. The method was developed by Meyer, Manthe,
and Cederbaum in 199046 as a generalization of the time-dependent
Hartree ansatz62 for solving the time-dependent Schrödinger equa-
tion. The MCTDH is widely used in chemical physics due to its
ability to obtain essentially exact fully quantum results for complex
molecular systems with a large number of vibrational modes and
strong non-adiabatic interactions.63,64

The standard ansatz for solving the time-dependent
Schrödinger equation is an expansion in a time-independent
basis with time-dependent coefficients of the form

Ψ(q1, . . . , qf , t) =
N1

∑
j1=1

. . .
Nf

∑
jf =1

Cj1...jf (t)
f

∏
k=1

χ(k)jk
(qk), (7)

where qk are system coordinates, Cj1...jf (t) are dynamical expansion
coefficients, and χ(k)jk

are the time-independent basis functions
that describe the kth degree of freedom. For example, in
molecular vibration problems, there would be f degrees of freedom
(e.g., vibrational modes) in this expansion, each described by a com-
plete basis of Njk basis functions (e.g., vibrational eigenfunctions)
represented on a one-dimensional coordinate grid using discrete
variable representation (DVR) techniques.65

The MCTDH method generalizes the static product basis
in Eq. (7) with a linear combination of time-dependent Hartree
products of the form

Ψ(q1, . . . , qf , t) =
n1

∑
j1=1

. . .
nf

∑
jf =1

Aj1...jf (t)
f

∏
k=1

ϕ(k)jk
(qk, t)

= ∑
J

AJ(t)ΦJ(t), (8)

where the collective index J labels the set of basis functions ϕjk

in a given tensor product configuration that contributes to the
wave function, the tensor AJ(t) ≡ Aj1...jf (t) contains the time-
dependent amplitudes of each product configuration, and ΦJ(t)
≡ ∏

f
k=1 ϕ(k)jk

(qk, t) denotes the instantaneous product basis config-
urations. The number of relevant basis states per configuration
and degree of freedom nk in Eq. (8) is typically smaller than the
number of DVR basis functions Nk needed for convergence to the
static ansatz in Eq. (7). As a result of this dynamical Hilbert space
contraction, the number of product configurations n1 × n2 × ⋅ ⋅ ⋅

× n f needed for convergence is usually smaller than the number
of static configurations in the standard method because nk < Nk for
each kth degree of freedom, which becomes important when solving
high-dimensional quantum dynamics problems.

The time-dependent Schrödinger equation is solved with the
MCTDH ansatz [Eq. (8)] and the Dirac–Frenkel variational princi-
ple.64 Coupled non-linear equations for the AJ and ΦJ tensors are
usually derived by introducing projectors over individual degrees
of freedom P̂ (k) ≡ ∑nk

j=1∣ϕ
(k)
j ⟩⟨ϕ

(k)
j ∣, which are complete in the limit

nk →∞. Projecting Eq. (8) over the kth degree of freedom gives

P̂ (k)Ψ =
nk

∑
l=1
∣ϕ(k)l ⟩⟨ϕ

(k)
l ∣Ψ⟩k =

nk

∑
l=1

ϕ(k)l Ψ(k)l , (9)

which, for the k = 1 degree-of-freedom, for example, would
give an expansion in the complementary space of the form
Ψ(1)l = ∑

n2
j2
⋅ ⋅ ⋅∑

nf
jf

Alj2 ⋅ ⋅ ⋅jf (t)ϕ
(2)
j2
⋅ ⋅ ⋅ϕ( f )

jf
. Variations of the time-

dependent coefficients AJ and one-dimensional time-dependent
functions ΦJ are given by

δΨ
δAJ
= ΦJ , (10)

δΨ
δϕ(k)jk

= Ψ(k)jk
, (11)

Ψ̇ = ∑
J

ȦJΦJ +

f

∑
k=1

nk

∑
jk=1

ϕ̇(k)jk
Ψ(k)jk

. (12)

Equations of motion for tensor coefficients A(t) are derived
using Eqs. (8), (10), and (12) in the Dirac–Frenkel variational
principle ⟨δΨ∣Ĥ∣Ψ⟩ = ı̇⟨δΨ∣ ∂

∂t ∣Ψ⟩ to get the set of coupled non-
linear equations

∑
L

AL⟨ΦJ ∣Ĥ∣ΦL⟩ = ı̇∑
L

ȦL⟨ΦJ ∣ΦL⟩ + ı̇
f

∑
k=1

nk

∑
l=1
⟨ΦJ ∣ ϕ̇(k)l ΦL⟩ (13)

and

ı̇ȦJ = ∑
L

AL⟨ΦJ ∣Ĥ∣ΦL⟩ − ı̇
f

∑
k=1

nk

∑
l=1

AJk
l
g(k)jl (14)
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with the constraint g(k)jl = ı̇⟨ϕ
(k)
j ∣ϕ̇

(k)
l ⟩ = ı̇⟨ϕ

(k)
j ∣ĝ

(k)
∣ϕ(k)l ⟩. In

Eq. (14), the tensor elements per degree of freedom are denoted as
AJk

l
≡ Aj1 ⋅ ⋅ ⋅l⋅ ⋅ ⋅jf .

The equations of motion for the functions ϕ(k)jk
are also found

variationally from the time-dependent Schrödinger equation. In
terms of the projection operators P̂ (k), they read

∑
lk

⟨Ĥ⟩(k)jk lk
ϕ(k)lk
= P(k)∑

lk

⟨Ĥ⟩(k)jk lk
ϕ(k)lk
+ ı̇∑

lk

ρ(k)jk lk
ϕ̇(k)lk

, (15)

ı̇ϕ̇(k)jk
= ∑

lk ,mk

(ρ(k)
−1

)
jk lk
(1 − P(k))⟨Ĥ⟩(k)lkmk

ϕ(k)mk , (16)

where ρ(k)jk lk
≡ ⟨Ψ(k)jk

∣Ψ(k)lk
⟩ is a reduced density matrix and

⟨Ĥ⟩(k)jl = ⟨Ψ
(k)
j ∣Ĥ∣Ψ

(k)
l ⟩ is the mean-field Hamiltonian of the kth

degree of freedom. The solution to the MCTDH equations of
motion preserves the norm and total energy for time-independent
Hermitian Hamiltonians. In this work, we use an extension of the
method that includes non-Hermitian (complex) potentials. The
complex character of the Hamiltonian is not treated as a complex
absorbing potential in the MCTDH Heidelberg package. We coded
the Hamiltonian directly on the integration routines of the package.
Additional details about the MCTDH method can be found in Refs.
46, 64, and 66.

III. RESULTS
We test the proposed MC-MCTDH method by solving selected

open quantum system problems of interest in cavity QED. For com-
parison, we also solve the corresponding Lindblad quantum master
equation for the density matrix using the open source Python library
QuTiP.67 The same desktop machine is used for all calculations
(3.0 GHz Intel Core i5 CPU, 8 GB RAM), unless otherwise stated.

A. Cavity field with finite photon lifetime
Consider a cavity mode with resonance frequency ωc in a struc-

ture with imperfect mirror reflectivity. The mode is modeled as a
quantum harmonic oscillator with annihilation operator â. Cavity
photons leak out to the far field at rate κ. A minimal decoherence
model for radiative decay can be constructed with the Lindblad
operator L̂κ =

√
κ â. The effective Hamiltonian for the deterministic

steps of the Monte Carlo propagation method is, thus, given by

Ĥ = (ω c − ı̇κ/2) â †â. (17)

The Heisenberg equation of motion for the number operator
n̂ = â †â has the simple solution ⟨n̂(t)⟩ = ⟨n̂(0)⟩ exp[−κt], i.e., expo-
nential decay of initial occupation number ⟨n̂(0)⟩ with population
decay time T1 = 1/κ. In Fig. 2, we show the MC-MCTDH evolution
of an initial Fock state with ⟨n̂(0)⟩ = 8 photons, together with the
analytical solution. The inset shows that a MSE ≈ 1% can be achieved
with about nT = 400 quantum trajectories.

This one-dimensional example is not exploiting the MCTDH
tensor ansatz, but demonstrates the stochastic quantum jumps on
a DVR grid for an excited Fock state. In general, most photonic
states of interest in quantum optics (Fock state, coherent states,
and squeezed light) can be accurately represented with DVR grids,68

which could be advantageous in comparison with more elaborate
phase-space representations.15,69

FIG. 2. Exponential decay of a lossy cavity. Simulated decay of an n = 8 Fock
state with nT = 200 MC-MCTDH quantum trajectories (solid line). The analytical
solution is shown for comparison (dashed line). Time is in units of the cavity
oscillation period τ = 2π/ωc, and κ = 0.016ωc is the photon decay rate. Inset:
Mean-squared error (MSE) as a function of the number of trajectories.

B. Vacuum Rabi oscillations
Our next case study is two bilinearly coupled quantum har-

monic oscillators in the rotating wave approximation. For an initial
state with a single excitation in one of the oscillators, i.e., ∣Ψ(0)⟩
= ∣1⟩∣0⟩, we expect the MC-MCTDH algorithm to describe damped
Rabi oscillations of the subsystem variables. For a harmonic oscil-
lator with annihilation operator b̂ and resonance frequency ω0 (e.g.,
molecular vibration) interacting with a cavity field â of frequency ωc,
the effective Hamiltonian is given by

Ĥ = (ω c − iκ/2)â †â + (ω0 − iγ/2)b̂ †b̂ + g(b̂ †â + b̂â †
), (18)

where g is the coupling strength (Rabi frequency). The dissipation
of the b-oscillator at rate γ is modeled with the Lindblad operator
L̂γ =
√γ b̂, and cavity dissipation is described as before.
Figure 3 shows the evolution of the occupation number ⟨b̂ †b̂⟩

obtained with the MC-MCTDH method for a strong resonant cou-
pling (ωc = ω0 and g/ωc > 0.1). The exact density matrix solution
is also shown for comparison. For the chosen system parameters,
averaging over nT = 50 quantum trajectories gives a good short-
time accuracy, although errors tend to accumulate at longer times
(t > 20 × 2π/ωc). Increasing the number of trajectories (nT ∼ 200)
gives results that better match the exact Liouville-space solution.

C. Jaynes–Cummings revivals in driven cavities
We now study the coupling of a two-level atom (qubit) with a

cavity field â prepared in a coherent state ∣α⟩with (real) amplitude α.
In the number (Fock) basis, the coherent state gives a Poissonian dis-
tribution with ⟨â †â⟩ = ∣α∣2.61 Unitary dynamics is governed by the
Jaynes–Cummings Hamiltonian70,71

Ĥ0 =
1
2

ω0σ̂z + ω câ †â + g(σ̂+â + σ̂−â †
), (19)

where σ̂z and σ̂± are the Pauli spin-1/2 operators, ω0 is the qubit
frequency, and g is the Rabi frequency. Since the spins do not
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FIG. 3. Vacuum Rabi oscillations. Coherent transfer of a single initial exci-
tation between two resonantly coupled harmonic oscillators, obtained with the
MC-MCTDH for two sets of quantum trajectories nT = (50, 200). The QuTiP Liou-
ville space solution is shown for comparison (black dashed line). The frequency
of the b-oscillators is ω0, the dissipation rates are κ = 0.026ω0 and γ = 0.013ω0,
and the bilinear coupling strength is g = 0.13ω0. Time in units of τ ≡ 2π/ω0.

have a coordinate dependence, we represent the two spin projec-
tions mz = ±1/2 in a DVR grid using two flat potentials separated
in energy by ω0, i.e., V±(q) = ±ω0/2. This is equivalent to having
two electronic states in the MCTDH package.47 Pauli operators can
be constructed accordingly. Atomic relaxation at the rate γ is given
by the Lindblad operator L̂γ =

√γ σ̂−, and cavity decay is described
before. The effective Hamiltonian for deterministic propagation is
given by Ĥ = Ĥ0 − i(κ/2) â †â − i(γ/2) σ̂+σ̂−, with Ĥ0 in Eq. (19).

Figure 4 shows the evolution of the inversion W(t) = ρee(t)
− ρgg(t), where ρii denotes level population. The qubit is initial-
ized in the excited level (W(0) = 1) and strongly couples to a cavity
that has initially ∣α∣2 = 5 photons on average. The Rabi frequency
is g = 0.13ω0. For the small damping rates used (κ = γ ∼ 10−3ω0),
the MC-MCTDH method reproduces the long-time revivals of

FIG. 4. Jaynes–Cummings population revivals in a driven cavity. MC-MCTDH
evolution of the atomic inversion W(t) for a qubit in a cavity initially prepared in
a coherent state with ∣α∣ = 5 average photons, for nT = 400 quantum trajectories
(solid red line). The Liouville-space solution is shown for comparison (dashed black
line). Inset: Mean squared error (MSE) as a function of the number of trajectories.
The qubit frequency is ω0, the dissipation rates are κ = γ = 3.5 × 10−3ω0, and
the Rabi frequency is g = 0.13ω0. Time in units of τ = 2π/ω0.

the population inversion expected due to the exchange of coher-
ence between qubit and Fock sub-levels that compose the coherent
state,71 using only nT = 400 quantum trajectories. Deviations from
the exact Liouville-space solution are negligible at short times, but
grow over longer timescales. The inset in Fig. 4 shows the drop of
the MSE with the increasing number of trajectories.

D. Independent quantum oscillators coupled
to a common cavity field

In this example, we consider a set of N independent oscilla-
tors b̂i that couple with a common quantized cavity field â. The
non-Hermitian effective Hamiltonian of the system is given by

Ĥ = ω câ †â −
ı̇κ
2

â †â +
N

∑
i=1
[ω0b̂†

i b̂i + g(b̂†
i â + b̂iâ †

) −
ı̇γ
2

b̂†
i b̂i], (20)

with jump operators for the b-oscillators L̂iγ =
√γb̂i, and cavity

dissipation described as before. We focus on the coherent pop-
ulation transfer between oscillators beyond the single-excitation
manifold.

Figure 5(a) shows the MC-MCTDH evolution of the occupa-
tion numbers ⟨b̂†

1 b̂1⟩ and ⟨b̂†
3 b̂3⟩ for a set of N = 4 oscillators in a

cavity that initially has one excitation in b1 and another excitation in
b2, with the cavity field in the vacuum, i.e., ∣Ψ(0)⟩ = ∣1, 1, 0, 0, n = 0⟩.
The results converge to the exact Liouville-space solution for the
b-variables for nT = 200 quantum trajectories. However, Fig. 5(b)
shows that long-time errors of about 4% tend to accumulate for the
photon number ⟨â †â⟩ after several population transfer cycles, which
could be reduced by increasing nT . The inset in Fig. 5(b) shows
that the method captures the short-time rise and long-time decay
of the n = 2 Fock state population P2. Since the amount of ground
state bleaching is significant (>10%), the Hilbert space dimension
needed to converge to the Liouville-space solution is higher than
that for the previous examples. For the parameters in Fig. 5, QuTiP
solutions converge with a minimum Hilbert space dimension of
d ≡ (νmax + 1)N

× (nmax + 1) = 324, where νmax = 2 is the maximum
quantum number used for each of the b-oscillators and nmax = 3 is
the highest Fock state included.

E. Strongly interacting array of quantum oscillators
coupled to a common cavity field

As a final example, we compute the dynamics of a circular array
of quantum harmonic oscillators of size N with periodic bound-
ary conditions. The array oscillator couples strongly to a common
cavity field. We monitor the population transfer dynamics between
oscillators in the array with the MC-MCTDH method assuming
strong bilinear coupling between sites. The effective Hamiltonian is
given by

Ĥ = ω câ †â −
ı̇κ
2

â †â +
N

∑
i=1
[ω0b̂†

i b̂i + g(b̂†
i â + b̂iâ †

) −
ı̇γ
2

b̂†
i b̂i]

+
N−1

∑
i=1

λ(b̂†
i b̂i+1 + b̂ib̂†

i+1) + λ(b̂†
1 b̂N + b̂1b̂†

N), (21)

where λ is the nearest-neighbor coupling and the other variables are
defined as before.
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FIG. 5. Cavity-mediated population transfer between N uncoupled oscilla-
tors. (a) MC-MCTDH energy transfer between subsystems (b1, b3) in a set of
N = 4 oscillators coupled resonantly with a cavity field, with nT = 200 quantum
trajectories (solid lines). (b) Photon occupation number ⟨â †â⟩ of cavity field using
the MC-MCTDH (solid red line) and solving the Lindblad master equation (black
dashed line). Inset: Time-dependent projection over Fock state with n = 2. The
frequencies of the b-oscillators are ω0, the dissipation rates are κ = 0.026ω0 and
γ = 0.013ω0, and the bilinear coupling strength is g = 0.13ω0. Time in units of
τ = 2π/ω0.

In Fig. 6, we show the occupation numbers of the cavity field
and the oscillator b̂1, for an array of size N = 4 and an initially excited
cavity with n = 2 photons. Two array excitation levels are studied. In
Fig. 6(a), the oscillator array is set to the ground state (νmax = 0).
In this case, the initial cavity excitations are transferred rapidly to
the oscillator array creating a many-particle wave packet that even-
tually decays within a few vibrational lifetimes. The evolution can
be converged in Liouville space with a truncated Hilbert space that
includes up to νmax = 3 excitations per site and nmax = 5 photons,
giving the Hilbert space dimension d = 1536. The converged MC-
MCTDH calculations involved Nk = 41 grid points for each degree
of freedom in a harmonic oscillator-DVR primitive basis, with nk = 4
time-dependent functions, giving 1844 equations of motion to solve.
Figure 6(a) shows that the MC-MCTDH expectation values agree
with the converged Liouville-space results within ∼1% with only
nT = 300 quantum trajectories.

In Fig. 6(b), we informally probe the efficiency of the
MC-MCTDH method by increasing the initial excitation density
of the array to two excitations: one excitation in oscillator b1 and
another excitation in oscillator b2, again with two initial cavity pho-
tons, i.e., ∣Ψ(0)⟩ = ∣1, 1, 0, 0, n = 2⟩. For the same Hamiltonian and

FIG. 6. Population transfer for a strongly coupled oscillator array in a
cavity. (a) MC-MCTDH evolution of the cavity occupation number ⟨â †â⟩ for an
array of N = 4 oscillators initially in the ground state inside a cavity with n = 2
photons (solid red line), for nT = 300 quantum trajectories. The Liouville-space
solution (QuTiP) is also shown (dashed black line); (b) the same as panel (a) for
two initial array excitations and two cavity photons. The density matrix solution was
obtained with an HCP workstation. In both panels, the inset shows the evolution
of the occupation number for oscillator b1. The b-oscillator frequencies are ω0,
the dissipation rates are κ = 0.026ω0 and γ = 0.013ω0, the light–matter coupling
strength is g = 0.13ω0, and the nearest-neighbor coupling in the array is λ = g/2.
Time is in units of τ = 2π/ω0.

dissipative parameters in Fig. 6(a), convergence of the Liouville
space solution was not possible on the same machine where the MC-
MCTDH was implemented, due to RAM constraints. We obtained
converged density matrix solutions with QuTiP implemented in a
high-performance computing (HCP) workstation. The minimum
Hilbert space dimension needed for 1% convergence was found to be
d = 10 368, which included νmax = 5 excitations per site and nmax = 7
cavity Fock states. Figure 6(b) shows that the MC-MCTDH solution
obtained in the low-RAM machine agrees well with the numerically
exact Liouville space solutions for â and b̂ oscillators in the HCP
workstation, using only 300 quantum trajectories.

IV. CONCLUSIONS AND DISCUSSION
Motivated by the current problems in molecular quantum

electrodynamics,9,33,34 we developed an efficient numerical method-
ology for computing the open system dynamics of strongly coupled
quantized oscillators. The method combines the deterministic non-
unitary propagation of the many-particle system wave function in
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a coordinate space with a sequence of stochastic quantum jumps
that model the interaction of the system with multiple reservoirs.
The stochastic component of the propagator is based on the Monte
Carlo wave function method developed in quantum optics,14 which,
by construction, converges to Lindblad semi-group dynamics.14 The
deterministic steps are implemented using the multi-configuration
time-dependent Hartree (MCTDH46) method, which was origi-
nally developed to describe wave packets with continuous-variable
degrees of freedom that are relevant in chemical dynamics.

We demonstrate the applicability of the method by solving the
open quantum system dynamics of selected scenarios of current
interest: (i) decay dynamics of a lossy optical cavity; (ii) vacuum Rabi
oscillations for strongly interacting cavity-vibration systems with
photonic and material losses; (iii) population revivals for a two-level
system in a driven cavity; (iv) photon-mediated population trans-
fer between independent molecular vibrations coupled to a common
cavity field; and (v) quench dynamics in an array of strongly inter-
acting vibrational oscillators with high initial excitation density. In
all cases, the proposed method converges to the exact Liouville-space
solution with a reasonably low number of quantum trajectories. For
an array of strongly coupled oscillators with high excitation density,
preliminary tests suggest that the method is more efficient than the
currently available open-source quantum optics libraries67 at equal
machine resources.

Applications of this quantum dynamics methodology include
the study of vibrational relaxation and rotational depolarization
of molecular ensembles in liquid-phase infrared cavities under
vibrational strong coupling,35 which are believed to determine the
dynamics of unconventional light–matter coherences that emerge
in two-dimensional infrared cavity spectroscopy,72 and the reac-
tive dynamics of polar molecules under vibrational ultrastrong
coupling.73,74 The methodology can also be implemented with
time-dependent Hamiltonians to study coherent control scenar-
ios in nanophotonics.75–77 Future extensions of the method can be
implemented to describe systems with non-Markovian coupling to
multiple reservoirs.49
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APPENDIX: EQUIVALENCE OF THE MONTE CARLO
WAVE FUNCTION METHOD AND LINDBLAD
QUANTUM MASTER EQUATIONS

The time evolution of wave function ∣Ψ(t)⟩ inside MCWF is
performed by finding the wave function at a time t + Δt for small
enough Δt. At first-order approximation, we obtain (in atomic units)

∣Ψ(t + Δt)N
⟩ = (1 − ı̇ĤΔt)∣Ψ(t)⟩, (A1)

where Ĥ is non-Hermitian, ∣Ψ(t + Δt)N
⟩ is not normalized, and

hence,

⟨Ψ(t + Δt)N
∣Ψ(t + Δt)N

⟩ = 1 − δp, (A2)

with

δp = ∑
n

δpn = Δt∑
n
⟨Ψ(t)∣L̂†

nL̂n∣Ψ(t)⟩, (A3)

where δpn describes the loss of the norm of jump operator L̂n.
Considering the operator σ̂(t) = ∣Ψ(t)⟩⟨Ψ(t)∣, for a defined

number of realizations with different random numbers ϵ at time
t + Δt, the average value of σ̂(t + Δt) is given by

σ̂(t + Δt) = (1 − δp)∣Ψ(t + Δt)⟩⟨Ψ(t + Δt)∣

+ δp∑
n

αn∣Ψ(t + Δt)⟩⟨Ψ(t + Δt)∣, (A4)

with αn = δpn/δp. Inserting Eqs. (4) and (A1) into Eq. (A4), we
obtain

σ̂(t + Δt) = (1 − ı̇ΔtĤ)σ̂(t)(1 + ı̇ΔtĤ †
) + δp∑

n
αn

L̂nσ̂(t)L̂†
n

δpn/δt
,

(A5)

σ̂(t + Δt) = σ̂(t) − ı̇ΔtĤσ̂(t) + ı̇Δtσ̂(t)Ĥ †

+ Δt∑
n

L̂nσ̂(t)L̂†
n +O(Δt2

), (A6)

and considering that Ĥ is given by Eq. (2), we obtain

σ̂(t + Δt) = σ̂(t) + ı̇Δt[σ̂(t), ĤS] −
Δt
2 ∑n
{σ̂(t), L̂†

nL̂n}

+ Δt∑
n

L̂nσ̂(t)L̂†
n +O(Δt2

). (A7)

Now, if we apply the limit Δt → 0, Eq. (A7) reduces to

dσ̂
dt
= ı̇[σ̂, ĤS] +L[σ̂], (A8)
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where L[σ̂] is the Lindblad superoperator given by

L[σ̂] = ∑
n

L̂nσ̂(t)L̂†
n −

1
2∑n
{σ̂(t), L̂†

nL̂n}. (A9)

Note that Eq. (A8) is equivalent to Eq. (1). Hence, we demonstrate
the validity of MCWF with the master equation in Lindblad form.

Now, the next step is to calculate the expectation value of a
given operator Ô, which, according to the density operator in the
limits Δt → 0 and nT →∞, is equivalent to ⟨Ô⟩ = Tr[ρ̂S(t)Ô]. In the
MCWF method, the expectation value is calculated by implementing
Eq. (6). However, in MCWF, there are numerical errors for a finite
number of trajectories nT. We measure the error by calculating the
mean squared error at time t given by

MSE[⟨Ô(t)⟩] =
1

n T

n T

∑
k=1
[⟨Ô(t)⟩(k) − ⟨Ô(t)⟩]

2, (A10)

where ⟨Ô(t)⟩(k) is the expectation value of trajectory k and
⟨Ô(t)⟩ = Tr[ρ̂S(t)Ô] is the exact solution.
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